Spring 2014

Approximation Algorithm for Set Cover

Lecturer: Arindam Khan

Date: 10th March, 2014

# 1 Approximation Algorithms

Karp (see Figure 1) introduced NP-complete problems. Unless P = NP, the optimization versions of these problems admit no algorithms that simultaneously (1) find optimal solution (2) in polynomial time (3) for all instances.



Figure 1: Karp's 21 NPC problems

Approximation algorithms relax the first requirement and settle for near optimal solutions.

**Definition 1.** Let  $\mathcal{A}$  be an algorithm for an optimization problem. Let  $\mathcal{A}(I)$  and Opt(I) be the solution returned by  $\mathcal{A}$  and the optimal solution for the instance I respectively.

Then Algorithm  $\mathcal{A}$  is  $\alpha$ -approximation

if  $\mathsf{Opt}(I) \leq \mathcal{A}(I) \leq \alpha \cdot \mathsf{Opt}(I)$  (for minimization problem) or

if  $\alpha \cdot \mathsf{Opt}(I) \leq \mathcal{A}(I) \leq \mathsf{Opt}(I)$  (for maximization problem).

Here  $\alpha$  is referred to as the approximation ratio, approximation factor or the performance guarantee of  $\mathcal{A}$ .

Different problems have different approximibility. Some problem such as TSP are inapproximable and some other problems such as Bin Packing admit PTAS.

**Definition 2.** A polynomial time approximation scheme (PTAS) is a family of algorithms  $\{\mathcal{A}_{\epsilon}\}$ , where for each  $\epsilon > 0$  there is an algorithm  $\mathcal{A}_{\epsilon}$  that is  $(1 + \epsilon)$ -approximation algorithm (for minimization problems) or  $(1 - \epsilon)$ -approximation algorithm (for maximization problems).

So, for any small constant  $\epsilon$  (say = 0.0001), we can get a 1.0001 approximation for any problem that admit PTAS.

Why study approximation algorithms?

- We need fast solution for practical problems.
- Provides mathematical rigor to study and analyze heuristics.
- Gives a metric for difficulty of different discrete optimization problems.
- It's cool!

We will study approximation algorithms for three such NPC problems:

- Set Cover
- Metric Traveling Salesman Problem
- Max Cut.

### 2 Set Cover

In the Set Cover problem, we are given a ground set of n elements  $E = \{e_1, e_2, \ldots, e_n\}$  and a collection of m subsets of  $E: S := \{S_1, S_2, \cdots, S_m\}$  and a nonnegative weight function  $cost : S \to \mathbb{Q}^+$ . We will sometimes use  $w_j = cost(S_j)$ . The goal is to find a minimum weight collection of subsets that covers all elements in E. Formally we want to find a set cover C that minimizes  $\sum_{S_j \in C} w_j$  subject to  $\bigcup_{S_j \in C} S_j = E$ . If  $w_j = 1$  for all j, then the problem is called the *unweighted* set cover problem.

- Set Cover is a problem whose study has led to the development of fundamental techniques for the entire field of approximation algorithms [2].
- It is a generalization of many other important NPC problems such as vertex cover and edge cover.
- It is used in the development of antivirus products, VLSI design and many other practical problems.

## 3 A Greedy Algorithm for Set Cover

#### 3.1 Algorithm

- 1. Initialize  $C \leftarrow \phi$ .
- 2. While C does not cover all elements in E do
  - (a) Define cost-effectiveness of each set  $S \in \mathcal{S}$  as  $\alpha_S = \frac{cost(S)}{|S \setminus C|}$
  - (b) Find S, the most cost-effective set in the current iteration.
  - (c) Pick S and for all newly covered elements  $e \in S \setminus C$ , set  $price(e) = \alpha_S$ .
  - (d)  $C \leftarrow C \cup S$ .
- 3. Output C.

#### 3.2 Analysis

- Returns a valid set cover in polynomial time.
- In any iteration, left over sets of the optimal solution can cover the remaining elements  $E \setminus C$  at a cost of Opt.
- Among these sets one must have cost-effectiveness  $\leq \frac{\text{Opt}}{|E \setminus C|}$ .
- W.l.o.g. assume that the elements are numbered in the order in which they were covered by the algorithm, resolving ties arbitrarily. Let  $e_1, e_2, ..., e_n$  be this numbering in the order they are covered by the greedy algorithm.
- Assume element  $e_k$  was covered by the most cost-effective set at some iteration  $i \leq k$ . At most (k-1) items were covered before the iteration i. Thus at least n (k-1) elements were not covered before the iteration i. and  $|E \setminus C| \geq (n k + 1)$ .
- $price(e_k) \leq \frac{\mathsf{Opt}}{|E \setminus C|} \leq \frac{\mathsf{Opt}}{n-k+1} = \frac{\mathsf{Opt}}{p}$  where p = (n-k+1).
- price is just distribution of set weights into the items. So the total cost of set cover  $\sum_{S_j \in C} cost(S_j) = \sum_{e_i \in E} price(e_i)$ .
- Now,  $\sum_{e_k \in E} price(e_k) \le \sum_{k=1}^n \frac{\mathsf{Opt}}{n-k+1} \le \sum_{p=1}^n \frac{\mathsf{Opt}}{p} \le H_n \cdot \mathsf{Opt}.$
- Thus the greedy algorithm has  $H_n$  or  $O(\log n)$  approximation ratio where  $H_n$  is the n'th Harmonic number.
- Note: Finding a good lower bound on **Opt** is a basic starting point in the design of an approximation algorithm for a minimization problem.

### 3.3 Tight Example for Analysis:

- See Figure 3.3 for a tight example for the greedy algorithm for the set cover.
- Optimal solution has only one set of cost  $(1 + \epsilon)$  where  $\epsilon (<< 1)$  is a very small constant close to 0.
- The greedy algorithm will return n singleton sets with total  $\cos t = \frac{1}{n} + \frac{1}{(n-1)} + \ldots + 1 = H_n$ .
- So, approximation ratio for this example is  $H_n/(1+\epsilon) \approx H_n$  as we can take  $\epsilon$  to be arbitrarily small.
- Thus the analysis gave a upper bound of  $H_n$  and this example gave a lower bound of  $H_n$  for the greedy algorithm. As the upper and lower bound matches, we call it a tight example and the analysis is tight.



Figure 2: Tight example for Greedy Algorithms for Set Cover

### 3.4 Hardness:

- Is there any other polynomial time algorithm that achieves  $(1 o(1)) \ln n$ -approximation assuming  $P \neq NP$ ?
- No! [Feige 1998]. The proof is quite complex and use probabilistic checkable proof systems (PCPs).

## 4 Resources:

I am following chapter 1 of [1] for the lectures. The book is freely available online: *http://www.designofapproxalgs.com/*. You can also see chapter 2 (Set Cover) from [2].

# References

- [1] Williamson, David P and Shmoys, David B. *The Design of Approximation Algorithms*. Cambridge University Press 2011.
- [2] Vazirani, Vijay V. Approximation Algorithms. Springer 2001.