
CS 6505 : Computability and Algorithms Spring 2014

Approximation Algorithm for Set Cover
Lecturer: Arindam Khan Date: 10th March, 2014

1 Approximation Algorithms

Karp (see Figure 1) introduced NP-complete problems. Unless P = NP, the optimization versions of these
problems admit no algorithms that simultaneously (1) find optimal solution (2) in polynomial time (3) for
all instances.

Figure 1: Karp’s 21 NPC problems

Approximation algorithms relax the first requirement and settle for near optimal solutions.

Definition 1. Let A be an algorithm for an optimization problem. Let A(I) and Opt(I) be the solution
returned by A and the optimal solution for the instance I respectively.
Then Algorithm A is α-approximation
if Opt(I) ≤ A(I) ≤ α · Opt(I) (for minimization problem) or
if α · Opt(I) ≤ A(I) ≤ Opt(I) (for maximization problem).

Here α is referred to as the approximation ratio, approximation factor or the performance guarantee of A.

Different problems have different approximibility. Some problem such as TSP are inapproximable and some
other problems such as Bin Packing admit PTAS.

Definition 2. A polynomial time approximation scheme (PTAS) is a family of algorithms {Aε}, where for
each ε > 0 there is an algorithm Aε that is (1 + ε)-approximation algorithm (for minimization problems) or
(1− ε)-approximation algorithm (for maximization problems) .

So, for any small constant ε (say = 0.0001), we can get a 1.0001 approximation for any problem that admit
PTAS.

1

Why study approximation algorithms?

• We need fast solution for practical problems.

• Provides mathematical rigor to study and analyze heuristics.

• Gives a metric for difficulty of different discrete optimization problems.

• It’s cool!

We will study approximation algorithms for three such NPC problems:

• Set Cover

• Metric Traveling Salesman Problem

• Max Cut.

2 Set Cover

In the Set Cover problem, we are given a ground set of n elements E = {e1, e2, . . . , en} and a collection of m
subsets of E: S := {S1, S2, · · · , Sm} and a nonnegative weight function cost : S → Q+. We will sometimes
use wj = cost(Sj). The goal is to find a minimum weight collection of subsets that covers all elements in E.
Formally we want to find a set cover C that minimizes ΣSj∈Cwj subject to

⋃
Sj∈C Sj = E. If wj = 1 for all

j, then the problem is called the unweighted set cover problem.

• Set Cover is a problem whose study has led to the development of fundamental techniques for the entire
field of approximation algorithms [2].

• It is a generalization of many other important NPC problems such as vertex cover and edge cover.

• It is used in the development of antivirus products, VLSI design and many other practical problems.

3 A Greedy Algorithm for Set Cover

3.1 Algorithm

1. Initialize C ← φ.

2. While C does not cover all elements in E do

(a) Define cost-effectiveness of each set S ∈ S as αS = cost(S)
|S\C|

(b) Find S, the most cost-effective set in the current iteration.

(c) Pick S and for all newly covered elements e ∈ S \ C, set price(e) = αS .

(d) C ← C ∪ S.

3. Output C.

2

3.2 Analysis

• Returns a valid set cover in polynomial time.

• In any iteration, left over sets of the optimal solution can cover the remaining elements E \C at a cost
of Opt.

• Among these sets one must have cost-effectiveness ≤ Opt
|E\C| .

• W.l.o.g. assume that the elements are numbered in the order in which they were covered by the
algorithm, resolving ties arbitrarily. Let e1, e2, ..., en be this numbering in the order they are covered
by the greedy algorithm.

• Assume element ek was covered by the most cost-effective set at some iteration i(≤ k). At most (k−1)
items were covered before the iteration i. Thus at least n− (k − 1) elements were not covered before
the iteration i. and |E \ C| ≥ (n− k + 1).

• price(ek) ≤ Opt
|E\C| ≤

Opt
n−k+1 = Opt

p where p = (n− k + 1).

• price is just distribution of set weights into the items. So the total cost of set cover
∑
Sj∈C cost(Sj) =∑

ei∈E price(ei).

• Now,
∑
ek∈E price(ek) ≤

∑n
k=1

Opt
n−k+1 ≤

∑n
p=1

Opt
p ≤ Hn · Opt.

• Thus the greedy algorithm has Hn or O(log n) approximation ratio where Hn is the n’th Harmonic
number.

• Note: Finding a good lower bound on Opt is a basic starting point in the design of an approximation
algorithm for a minimization problem.

3.3 Tight Example for Analysis:

• See Figure 3.3 for a tight example for the greedy algorithm for the set cover.

• Optimal solution has only one set of cost (1 + ε) where ε(<< 1) is a very small constant close to 0.

• The greedy algorithm will return n singleton sets with total cost = 1
n + 1

(n−1) + . . .+ 1 = Hn.

• So, approximation ratio for this example is Hn/(1 + ε) ≈ Hn as we can take ε to be arbitrarily small.

• Thus the analysis gave a upper bound of Hn and this example gave a lower bound of Hn for the greedy
algorithm. As the upper and lower bound matches, we call it a tight example and the analysis is tight.

Figure 2: Tight example for Greedy Algorithms for Set Cover

3

3.4 Hardness:

• Is there any other polynomial time algorithm that achieves (1 − o(1)) lnn-approximation assuming
P 6= NP?

• No! [Feige 1998]. The proof is quite complex and use probabilistic checkable proof systems (PCPs).

4 Resources:

I am following chapter 1 of [1] for the lectures. The book is freely available online: http://www.designofapproxalgs.com/ .
You can also see chapter 2 (Set Cover) from [2].

References

[1] Williamson, David P and Shmoys, David B. The Design of Approximation Algorithms. Cambridge Uni-
versity Press 2011.

[2] Vazirani, Vijay V. Approximation Algorithms. Springer 2001.

4

http://www.designofapproxalgs.com/

	Approximation Algorithms
	Set Cover
	A Greedy Algorithm for Set Cover
	Algorithm
	Analysis
	Tight Example for Analysis:
	Hardness:

	Resources:

